ar X iv : m at h / 05 03 34 0 v 1 [ m at h . A G ] 1 6 M ar 2 00 5 WEYL GROUPS AND ABELIAN VARIETIES

نویسنده

  • R. E. RODRÍGUEZ
چکیده

Let G be a finite group. For each integral representation ρ of G we consider ρ−decomposable principally polarized abelian varieties; that is, principally polarized abelian varieties (X,H) with ρ(G)−action, of dimension equal to the degree of ρ, which admit a decomposition of the lattice for X into two G−invariant sublattices isotropic with respect to IH , with one of the sublattices ZG−isomorphic to ρ. We give a construction for ρ−decomposable principally polarized abelian varieties, and show that each of them is isomorphic to a product of elliptic curves. Conversely, if ρ is absolutely irreducible, we show that each ρ−decomposable p.p.a.v. is (isomorphic to) one of those constructed above, thereby characterizing them. In the case of irreducible, reduced root systems, we consider the natural representation of its associated Weyl group, apply the preceding general construction, and characterize completely the associated families of principally polarized abelian varieties, which correspond to modular curves.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 01 10 07 0 v 1 [ m at h . A G ] 5 O ct 2 00 1 FROBENIUS SPLITTING AND ORDINARITY

We examine the relationship between the notion of Frobe-nius splitting and ordinarity for varieties. We show the following: a) The de Rham-Witt cohomology groups H i (X, W (OX)) of a smooth projec-tive Frobenius split variety are finitely generated over W (k). b) we provide counterexamples to a question of V. B. Mehta that Frobenius split varieties are ordinary or even Hodge-Witt. c) a Kummer K...

متن کامل

ar X iv : m at h / 05 07 09 7 v 2 [ m at h . G R ] 1 3 Ju l 2 00 5 BOUNDED COHOMOLOGY AND ISOMETRY GROUPS OF HYPERBOLIC SPACES

Let X be an arbitrary hyperbolic geodesic metric space and let Γ be a countable subgroup of the isometry group Iso(X) of X. We show that if Γ is non-elementary and weakly acylindrical (this is a weak properness condition) then the second bounded cohomology groups H 2 b (Γ, R), H 2 b (Γ, ℓ p (Γ)) (1 ≤ p < ∞) are infinite dimensional. Our result holds for example for any subgroup of the mapping c...

متن کامل

ar X iv : m at h / 06 12 24 1 v 1 [ m at h . L O ] 9 D ec 2 00 6 Filtration - equivalent א 1 - separable abelian groups of cardinality א

We show that it is consistent with ordinary set theory ZF C and the generalized continuum hypothesis that there exist two ℵ 1-separable abelian groups of cardinality ℵ 1 which are filtration-equivalent and one is a Whitehead group but the other is not. This solves one of the open problems from [EkMe].

متن کامل

ar X iv : m at h / 06 09 25 3 v 1 [ m at h . R T ] 9 S ep 2 00 6 COMPRESSION OF FINITE GROUP ACTIONS AND COVARIANT DIMENSION

Let G be a finite group and φ : V → W an equivariant morphism of finite dimensional G-modules. We say that φ is faithful if G acts faithfully on φ(V ). The covariant dimension of G is the minimum of the dimension of φ(V ) taken over all faithful φ. In this paper we investigate covariant dimension and are able to determine it for abelian groups and to obtain estimates for the symmetric and alter...

متن کامل

ar X iv : 0 70 7 . 09 70 v 2 [ m at h . G R ] 1 8 Ju l 2 00 7 Non - abelian free groups admit non - essentially free actions on rooted

We show that every finitely generated non-abelian free group Γ admits a spherically transitive action on a rooted tree T such that the action of Γ on the boundary of T is not essentially free. This reproves a result of Bergeron and Gaboriau. The existence of such an action answers a question of Grigorchuk, Nekrashevich and Sushchanskii.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005